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a b s t r a c t

Mathematical models of biofiltration often encounter uncertain parameters characterizing mass transfer,
microbial degradation, biofilm growth, and biofilm detachment. The genetic algorithm, which is one of
the most reliable methods for optimization although it has rarely been addressed in biofiltration models
up to now, was utilized to estimate the unknown parameters using given experimental data. This study
combined genetic algorithm and biofiltration equations to obtain simulated ethylene (C2H4) removal
efficiencies with estimated parameters. Sensitivity analysis of each parameter was assessed to observe
the significance of each parameter.

As a result, the simulation well characterized C2H4 removal efficiencies for most of the reactors. The
large difference in removal efficiencies among reactors could be mostly explained using the mass transfer
thylene (C2H4)

enetic algorithm
arameter estimation

parameters. Perlite biotrickling filters with low continuous liquid flow tended to increase C2H4 removal
efficiencies, due to a large active surface area of biofilm facilitating C2H4 transfer from the gas to the
biofilm phase. Conversely, most of the other reactors underwent relatively low C2H4 removal because of
high liquid flow that generated a severe mass transfer limitation. The low C2H4 removal in the biofilters
with discontinuous liquid recirculation flow, in spite of the lowest liquid flow rate was, probably caused

grow
by a low active microbial

. Introduction

Mathematical models have been developed and utilized to
nvestigate the mechanisms and discriminate significant design
nd operation parameters on biofiltration. Diks and Ottengraf
eveloped a biofiltration model for other pollutants to simulate
he reaction in fixed film bioscrubbers based on the assumption of
ero-order growth in microbial degradation [1,2]. Some previous
tudies focused on simulation and parameter estimation of biofil-
ration of alkane compounds which are insoluble in water. These
lso used a model to predict biofilter performance under a steady
tate condition [3–5]. Deshusses et al. studied dynamic simula-
ion to predict short-term biofiltration performance with regard
o the interaction between contaminants [6,7]. Alonso et al. uti-
ized a dynamic mathematical model to predict the biodegradation
f toluene with biotrickling filtration [8,9]. The model for toluene
emoval can incorporate the effects of free water flow and biomass

ccumulation on filter media. The concept of pseudo steady state
an facilitate the simulation of contaminant removal according to
icrobial growth.
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In spite of efforts to develop simulations for better understand-
ing of biofiltration mechanisms, there are several challenges to
implementing the current models. The first challenge is how to
predict the distribution of biofilm mass, which is an important
parameter that influences substrate biodegradation in biofilters.
Unfortunately, there are no known methods for accurately deter-
mining the parameter. The assessment of biofilm mass distribution
is complicated by several factors such as non-uniformity of biofilm
coverage over media and the presence of inactive biofilm in con-
taminant transfer and degradation [10].

Another challenge is to specify the kinetics of biodegradation.
The estimation of kinetic parameters for the biological reactions
taking place in the biofilter is not straightforward. Experimental
data from batch reactors was used to easily obtain microbial kinetic
information in biofiltration [9]. However, as Spigno and de Faveri
reported [11], the biofilm formation of continuous reactions is often
different from that of batch reaction.

While mathematical models of biofilters are complicated due
to the high uncertainty of the parameters as stated above, inverse
modeling offers a way to estimate them. If a proper set of exper-

imental data is provided, estimation of the unknown parameters
with a high degree of certainty can be identified using the inverse
modeling approach. One of the most common methods for opti-
mization is utilizing the derivative function for gradient search such
as Newton, Levenberg-Marquardt, and Conjugate gradient methods

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:lee323@purdue.edu
dx.doi.org/10.1016/j.cej.2009.12.034
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Nomenclature

CAi concentration of i substrate in the gas phase
(mg m−3)

Cin inlet ethylene level entering the upper part of the
media in a reactor (mg m−3)

CLi concentration of i substrate in the gas phase
(mg m−3)

Ct
exp experimentally measured ethylene concentration at

time t (mg m−3)
Cz,t ethylene concentrations at depth z and time t

(mg m−3)
CB

z,x,t ethylene concentration in the biofilm phase at
media depth z, biofilm depth x, and time t (mg m−3)

D diffusion constant of ethylene in the liquid or the
biofilm phase (m2 s−1)

dfn degree of freedom for daily ethylene removal effi-
ciency during the normal loading

dftran degree of freedom for ethylene removal efficiency
during the transient loading

dfpr degree of freedom for ethylene removal efficiency
during the profile study

H total media depth of the reactor (=50 cm) (m)
KAO ethylene partition coefficient between air and

octanol phases
ka lumped mass transfer parameter of ethylene

(m2 m−3)
kd biofilm detachement/deactivation rate (h−1)
Kh half saturation coefficient of the ethylene in the

biofilm phase (mg m−3)
kL =X/Y (mg m−3)
L biofilm depth (or thickness) (m)
L0 biofilm depth (or thickness) on day 92 (m)
Maxno maximum of generation number
MSE mean square error to be minimized by the genetic

algorithms
Re ethylene removal efficiency
Si concentration of i substrate in the biofilm phase

(mg m−3)
t reaction time (s, h, or day)
V the lumped ethylene biodegradation parameter

(mg m−3 h−1)
V′ =V/Kh (h−1)
wn weight constant for normal loading
wtr weight constant for transient loading
wpr weight constant for the profile study
X density of microbial cells of ethylene degradation

(mg m−3)
x spatial variable for biofilm depth (or thickness) (m)
Y yield coefficient
z spatial variable on media depth (m)

Greek symbols
�max specific microbial degradation rate (h−1)
� an arbitrary random value ranging from zero to

unity

Genetic symbols
P(1,J,k) ka(BHF-L) (m2 m−3)
P(2,J,k) ka(BHF-M) (m2 m−3)
P(3,J,k) ka(BHF-H) (m2 m−3)
P(4,J,k) ka(BF) (m2 m−3)
P(5,J,k) ka(BHF-GB) (m2 m−3)
P(6,J,k) kd(BHF-L) (h−1)

P(7,J,k) kd(BHF-M) (h−1)
P(8,J,k) kd(BHF-H) (h−1)
P(9,J,k) kd(BF) (h−1)
P(10,J,k) kd(BHF-GB) (h−1)
P(11,J,k) kL (mg m−3)

′ −1
P(12,J,k) V (h )
P(13,J,k) L0 (m)

[12,13]. All these methods should use either analytical expressions
or numerical approximations of the derivatives to find the optimal
solution [12,13]. Unfortunately, those often fail to find the global
optimized solution from non-linear equations with numerical iter-
ation.

On the other hand, non-gradient-based optimization methods
not requiring derivatives rely on finding optimal solutions only by
memorizing previous estimates of parameters [13,14]. The genetic
algorithm is one of the most popular methods in non-gradient-
based optimization [14–16]. Unfortunately, there is no method that
can definitely obtain a globally optimized solution for a non-linear
function. However, many problems on global optimization have
been successfully solved by the use of the genetic algorithm.

Some previous applications of the inverse model approach
using the genetic algorithm concentrated on the characterization
of conventional bioprocesses such as fermentation [17–19], and
several studies were for biofiltration [10]. Bhat et al.’s evolution-
ary algorithm was applied to biofiltration modeling for analyzing
the phenol degradation parameters and simulated removal [10].
Rene et al.’s studies utilized the neural network model to construct
an empirical correlation to machine learning. This model predicts
biofiltration performance directly from the biofilter design input
values such as inlet contaminant concentrations and gas flow veloc-
ity [20,21].

The primary objective of the present study is to develop an
efficient genetic algorithm for estimating unknown parameters
that control C2H4 biodegradation. To achieve this goal, the genetic
algorithm should be combined with the biofiltration model. The
experimental data in the study of Lee and Lee et al. [22,23] were
provided as input data for the parameter estimation procedure. The
mathematical equations that simulate the biofiltration processes,
including mass transfer, biodegradation, and biofilm growth, were
modified from those of Alonso et al. [8,9], which is one of the
most applicable models to the long-term unsteady state condition
of biotrickling filtration used in this present study. The resulting
algorithm is implemented as a computer program and applied to
simulate C2H4 removal over time.

2. Mathematical model

2.1. Mass transfer of C2H4 through active surface

It is assumed that gas and liquid in the reactor are moved via
convection transport along the vertical direction of a reactor in the
co-current flow condition. The chemical i in the gas phase (CAi) is
transferred into liquid phase (CLi) and diffused into biofilm phase
(Si). The biodegradable contaminants in the biofilm phase are elim-
inated by microbial degradation.

Fig. 1a–c illustrates the concentration gradients of contami-
nants in the two or three phases of a biotrickling filter. In Fig. 1a,

hydrophilic contaminants can easily be transferred through the
liquid phase. The gradient of the concentrations of hydrophilic con-
taminants in the biofilm phase depends on mass transfer, diffusion,
and microbial uptake.
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2.4. Genetic algorithm
ig. 1. Concentration gradients in two or three phases for hydrophilic contaminants
hrough liquid flow (a), hydrophobic contaminants with liquid flow as barrier (b),
nd hydrophilic/hydrophobic contaminants without liquid barrier (c).

Fig. 1b shows that a hydrophobic compound cannot be trans-
erred to the biofilm phase, because of mass transfer resistance
nder the presence of thick liquid films (e.g. when trickle liquid
ecirculation flow rates are excessive). Fig. 1c demonstrates the
ass transfer of hydrophobic gaseous contaminants on biofilm-

overed media surfaces in the absence of the thick liquid film. The
urface is referred to as active surfaces in this study. If the contam-
nant is insoluble in water but easily absorbed to the biofilm, there
re possible ways for removal of the contaminants by direct con-
act of the gaseous contaminant to the active biofilm surface, which
s achieved by optimizing the trickle liquid flow rate to minimize
iquid film thickness [23,24].

.2. Assumptions

The following simplifying assumptions were made for the sim-
lation:

1) There is no chemical reaction between compounds of contam-
inants except interactions by microbial reaction.

2) Temperature and viscosity of gas (air) and liquid (water) are
constant.

3) There are no nutrient or oxygen limitations to microbial growth.
4) There is no effect of pH on C2H4 removal.
5) The mass transfer between gas/liquid interfaces is always in

equilibrium.

6) The active surface area of a reactor is invariant throughout the

entire operation.
7) There is no multi-dimensional change in biofilm formation such

as spreading.
eering Journal 158 (2010) 89–99 91

2.3. C2H4 biofiltration equations

The dynamic mass transfer of C2H4 through a unit surface of
media can be described as follows:

∂Cz,t

∂t
= −v

∂Cz,t

∂z
− kaD

∂CB
z,x,t

∂x
|y=Lz,t (1)

BC 1: At z = 0, C0,t = Cin

BC 2: CH,t = Cexp
t

BC 3: Cz,t
KAO

= CB
z,L,t

BC 4: ∂Cz,x,t
∂x

|x=0 = 0

The variable Cz,t represents the concentrations of C2H4 at depth
z and time t. The variable CB

z,x,t means the C2H4 concentration in
the biofilm phase. Since C2H4 is sparingly soluble to water, no
C2H4 molecule in the liquid phase was assumed. The unknown
parameter ka (m2 m−3) is a characteristic parameter related to C2H4
mass transfer through the active surface area of the biofilm-covered
media and should be estimated using the experimental data. The
coefficient D is the diffusivity of C2H4 in the liquid or the biofilm
phase. The C2H4 diffusivity in the water (or biofilm) phase could
be estimated as 1.71 × 10−5 cm2/s using the Wilke-Chang method
[25].

As for the boundary conditions, the value Cin means the inlet
C2H4 level entering the upper part of the media in a reactor.
The outlet C2H4 concentrations should be estimated to be equal
to the measured level as much as possible. Ct

exp is experimen-
tally measured data. H is the total media depth of the reactor
(50 cm). The third boundary condition described is the phase trans-
fer between the gas and the biofilm phases. For this, the coefficient
KAO (Air–octanol partition), which is the C2H4 partition between
air and octanol, can be used [26,27]. The last equation (BC4) shows
the insulation boundary condition of ethylene diffusion on a solid
media surfaces.

Both the diffusion and the microbial degradation of the C2H4 in
the biofilm phase can be presented as follows:

∂CB
z,x,t

∂t
= D

∂2CB
z,x,t

∂x2
− V

CB
z,x,t

Kh + CB
z,x,t

(2)

where Kh is the half saturation coefficient of the C2H4 in the biofilm
phase. One can find that CB

z,x,t is also a function of x, the depth of
the biofilm. The parameter V contains the specific microbial degra-
dation rate (�max), the microbial cell density (X), and the yield
coefficient (Y). The C2H4 degradation was assumed to follow first
order kinetics using the parameter V′ instead of the Monod-type
equation, due to a high mass transfer limitation from gas to liquid
(or biofilm) phases. Therefore, the second term of the right-hand
side of Eq. (2) can be simplified as follows:

V
CB

z,x,t

Kh + CB
z,x,t

≈ V ′ · CB
z,x,t (3)

V ′ = V

Kh

The dynamic change of the biofilm thickness at the media depth
z in a reactor can be described as follows:

∂Lz,t

∂t
= D

kL

∂CB
z,x,t

∂x
|x=L(z,t) − kdLz,t (4)
The genetic algorithm is an optimal method for simulating the
principles of genetics and evolution on natural selection. Along the
genetic evolution, each chromosome (parameter set) consists of
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Fig. 2. Flowchart of the g

enes (parameters), and the chromosome is included in a popu-
ation (a group of parameter sets) that exists in a generation (an
teration stage). Each parameter set undergoes evolution processes
uch as survival, extinction, mutation, or mating with other param-
ter sets throughout generations (stages). Based on certain criteria,
ome parameter sets with higher fitness for a given requirement are
elected to survive in the generation but others become extinct, by
he process of natural selection [14].

In an optimization approach to maximize fitness, a cost value,
epresenting the fitness of each parameter set, is assessed. If the
tness is high (or the cost is low), the parameter set has an advan-
age in selection for mating and survival. Fig. 2 demonstrates the
ow chart of the genetic algorithm designed for the parameter
stimation for this study.

The first step was to generate a random initial population. One
opulation consisted of 400 parameter sets. The initial values for
he parameters were randomly specified.
(i, j, 0) = PL(i, j) + (PH(i, j) − PL(i, j)) × � (5)

here � is a random value ranging from zero to unity. Table 1
hows the list of parameters (P(i,j,k)), and their ranges (PH(i,j) and

able 1
nknown parameters and variables to be estimated using genetic algorithm.

Genes Parameters Low limit (PL) High limit (PH)

P(1,J,k) ka(BHF-L) 10 1.00E+05
P(2,J,k) ka(BHF-M) 10 1.00E+05
P(3,J,k) ka(BHF-H) 10 1.00E+05
P(4,J,k) ka(BF) 10 1.00E+05
P(5,J,k) ka(BHF-GB) 10 1.00E+03
P(6,J,k) kd(BHF-L) 1 1.00E−03
P(7,J,k) kd(BHF-M) 1 1.00E−03
P(8,J,k) kd(BHF-H) 1 1.00E−03
P(9,J,k) kd(BF) 1 1.00E−03
P(10,J,k) kd(BHF-GB) 1 1.00E−03
P(11,J,k) kL 1 1.00E+10
P(12,J,k) V′ 1 1.00E+10
P(13,J,k) L0 1.00E−07 1.00E−04
algorithm for this study.

PL(i,j)) which stand for the maximal and the minimal values of an
estimated parameter.

The ranges were given prior to genetic algorithm modeling, and
any estimated parameters during the modeling could not devi-
ate out of the ranges. The specification of the ranges was helpful
to avoid the estimations of parameters that were mathematically
correct but physically unreasonable. Other constraints were that
two duplicated reactors in each treatment set should have iden-
tical values for the parameters ka and kd and all reactors should
have the same values for kL, V′, and initial biofilm thickness (L0).
Since the parameter ka is closely related to the media specific
surface area, the possible maximum value was equal to the total
specific surface area of perlite (105 m2 m−3) or that of glass beads
(103 m2 m−3). Perlite specific surface area from the literature is
3.5 m2 g−1 [28]. This is much higher than the specific surface area
of a glass bead (�0.001 m2 g−1). However, perlite surface contains
many micropores and mesopores as well as macro-pores [29]. The
micro- and mesopores are usually unavailable for biofilm attach-
ment and growth. Therefore, this study assumed only parts of the
perlite surface can includes active biofilm.

The next step was to calculate the cost of each parameter set in
the population. The mean square error (MSE) was used as the cost
value that can be assessed as follows:

MSE =
wn

i=5∑

i=1

∑

t

(Re(i, t)2
n,exp − Re(i, t)2

n,sim)

dfn

+
wtr

itr=3∑

itr=1

3∑

in=1

∑

t

(Re(itr, in, t)2
tr,exp − Re(itr, in, t)2

tr,sim)

dftran

ipr=3
+

wpr

∑

ipr=1

3∑

id=1

∑

t

(Re(ipr, id, t)2
pr,exp − Re(ipr, id, t)2

pr,sim)

dfpr
.

(6)
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ig. 3. The sub-processes of the genetic algorithm as gene extinction (a), pairing for
rossover (b), crossover (c), and mutation (d).

The weight constant for normal loading wn is unity, and those
or the transient loading (wtr) and the profile study (wpr) are five, in
rder to reflect the high significance of the data on transient load-
ng and the profile studies. The variable Re(x,t) means C2H4 removal
fficiency at arbitrary dataset x on day t. Each of the degree of free-
om for the data of the normal operation, the transient loading,
nd the profile study are denoted as dfn, dftran, or dfpr, respectively.
low resultant MSE means a high fitness. The weighting factor of a

nity was given to calculate MSE for the C2H4 removal efficiencies
nder normal loading.

Next, some individual parameter sets from the current popu-
ation were selected to generate an offspring (n individuals) by
opying its own parameters. In this study, 50% of parameter sets,
hose with low fitness in a generation, were discarded and not con-
idered for mating in the next generation (Fig. 3a). The pairing was
ade by random selection of any two parameter sets (Fig. 3b). The

rossover points were randomly chosen for the mating of a pair of
arameter sets (Fig. 3c). The mutation was given by selecting one
ene and changing the value to a different one within the range
pecified in Table 1 (Fig. 3d). The probability of the selection for the
utation was 0.1.

The maximum generation number (Maxno) was set as 500 in

his study, which was decided empirically. At generation numbers
00 and 400, the minimum value of each parameter was limited
o 0.9% to 0.95% of the optimal parameter values, respectively. The

aximum value was 1.1 and 1.05 times the optimal parameter val-
Fig. 4. Variation of mean squared errors between measured and simulated ethylene
removal for each population as influenced by generation.

ues, respectively. This was helpful to reduce the computation time
for the global optimization in the parameter estimation.

After the major parameter estimation task stated above, the
genetic algorithm was implemented for each single reactor, and
consequentially, each parameter was estimated for only a single
set. The objective of the work was to check the validity of the
assumption that the respective parameters V′, kL, and the variable
L0 are identical over all reactors, if a minimized MSE is obtained
via convergence resulting from the iteration, the correspond-
ing parameters are optimally estimated. All of the computations
including the genetic algorithm and the biofiltration model were
programmed using C language in Microsoft Visual Studio software.

3. Results and discussion

3.1. Minimization of MSE

The parameter estimation using the genetic algorithm was con-
ducted with a total 821 data sets, each set produced C2H4 removal
efficiencies for all reactors. Some of the resultant MSE according
to the generation elapsed are presented in Fig. 4. The computation
time for the genetic algorithm was about 23–28 s per generation.
Since the genetic algorithm is inherently stochastic, the global opti-
mization was not guaranteed with a single implementation. Hence,
as shown in Fig. 4, the best 20 chromosomes with low costs were
selected based on results from 10 independent implementations of
the genetic algorithm. Each implementation was completely inde-
pendent of the others. Table 2 exhibits the variation of MSE of the
20 parameter sets, with low MSEs for each generation stage, and
Table 3 shows the value of each parameter in the set with the lowest
MSE for each generation.

The costs decreased greatly during early generation. The costs
of the first generation were 0.042–0.14 but those decreased to
0.016–0.020 by the 10th generation. At the 200th generation,
all chromosomes converged around 0.007. Optimization of the
minimal cost was confirmed by the gradient-based optimization
previously used [8,9]. The average costs from the first to the 199th
generation were 0.06–0.10, which varied only slightly with each
elapsed generation. However, after the 200th and the 400th gener-
ation, the average costs decreased to approximately 0.02 and 0.01,
respectively. Such phenomena imply that the average costs were
highly affected by the parameter ranges specified prior to the model
implementation.
3.2. Simulated C2H4 removal

The results of the process model are shown in Fig. 5a–e with
five treatment sets. The standard deviations of the model data
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Table 2
MSE variation of the best 20 parameter sets as generation elapsed.

0 1 2 3 4 5 10 20 30 40 50 60 80

1 4.25E−02 4.25E−02 3.36E−02 2.59E−02 2.59E−02 2.59E−02 1.59E−02 1.38E−02 1.18E−02 1.11E−02 1.02E−02 9.38E−03 7.76E−03
2 4.28E−02 4.25E−02 4.25E−02 3.36E−02 3.36E−02 2.66E−02 1.59E−02 1.38E−02 1.21E−02 1.13E−02 1.04E−02 9.38E−03 9.13E−03
3 4.35E−02 4.25E−02 4.27E−02 3.89E−02 3.36E−02 2.73E−02 1.77E−02 1.41E−02 1.29E−02 1.13E−02 1.04E−02 9.38E−03 9.13E−03
4 4.36E−02 4.27E−02 4.27E−02 4.10E−02 4.09E−02 2.96E−02 1.97E−02 1.41E−02 1.29E−02 1.14E−02 1.57E−02 9.38E−03 9.13E−03
5 4.37E−02 4.27E−02 4.27E−02 4.11E−02 4.11E−02 3.36E−02 2.06E−02 1.47E−02 1.35E−02 1.15E−02 1.60E−02 1.10E−02 9.30E−03
6 4.40E−02 4.28E−02 4.27E−02 4.12E−02 4.11E−02 3.36E−02 2.20E−02 1.74E−02 1.51E−02 1.15E−02 1.65E−02 1.27E−02 9.93E−03
7 4.42E−02 4.29E−02 4.28E−02 4.12E−02 4.12E−02 3.36E−02 2.30E−02 1.82E−02 1.51E−02 1.54E−02 1.67E−02 1.35E−02 1.06E−02
8 4.50E−02 4.33E−02 4.28E−02 4.13E−02 4.12E−02 3.36E−02 2.30E−02 1.82E−02 1.71E−02 1.74E−02 1.77E−02 1.38E−02 1.20E−02
9 4.52E−02 4.34E−02 4.30E−02 4.13E−02 4.12E−02 3.49E−02 3.05E−02 2.01E−02 1.77E−02 1.77E−02 1.77E−02 1.50E−02 1.20E−02

10 4.54E−02 4.37E−02 4.31E−02 4.16E−02 4.13E−02 3.52E−02 3.61E−02 2.29E−02 1.82E−02 1.78E−02 1.90E−02 1.54E−02 1.20E−02
11 4.60E−02 4.37E−02 4.32E−02 4.17E−02 4.17E−02 3.81E−02 3.63E−02 2.48E−02 2.04E−02 1.78E−02 2.23E−02 2.27E−02 1.26E−02
12 4.63E−02 4.38E−02 4.33E−02 4.20E−02 4.18E−02 4.06E−02 3.81E−02 2.69E−02 2.07E−02 1.79E−02 2.24E−02 2.32E−02 1.43E−02
13 4.68E−02 4.39E−02 4.33E−02 4.25E−02 4.18E−02 4.07E−02 3.87E−02 2.78E−02 2.15E−02 1.95E−02 2.35E−02 2.66E−02 1.50E−02
14 4.73E−02 4.39E−02 4.34E−02 4.25E−02 4.20E−02 4.09E−02 3.91E−02 2.83E−02 2.25E−02 2.02E−02 2.41E−02 2.73E−02 1.55E−02
15 4.74E−02 4.40E−02 4.35E−02 4.27E−02 4.20E−02 4.09E−02 3.92E−02 2.83E−02 2.36E−02 2.02E−02 3.19E−02 2.75E−02 1.59E−02
16 1.33E−01 1.18E−01 5.92E−02 3.14E−02 3.05E−02 3.05E−02 1.95E−02 1.66E−02 1.35E−02 1.15E−02 1.15E−02 1.13E−02 1.13E−02
17 1.36E−01 1.30E−01 6.46E−02 5.31E−02 3.11E−02 3.11E−02 1.95E−02 1.69E−02 1.46E−02 1.15E−02 1.15E−02 1.14E−02 1.13E−02
18 1.38E−01 1.33E−01 6.62E−02 5.56E−02 3.14E−02 3.44E−02 1.95E−02 1.70E−02 1.47E−02 1.18E−02 1.15E−02 1.15E−02 1.13E−02
19 1.40E−01 1.33E−01 6.98E−02 5.68E−02 3.88E−02 3.84E−02 1.95E−02 1.73E−02 1.47E−02 1.23E−02 1.36E−02 1.15E−02 1.13E−02
20 1.40E−01 1.36E−01 7.27E−02 5.75E−02 4.06E−02 3.97E−02 1.95E−02 1.75E−02 2.01E−02 1.67E−02 1.85E−02 1.55E−02 1.92E−02

100 120 140 160 180 200 240 280 320 360 400 440 500

1 7.46E−03 7.41E−03 6.98E−03 6.87E−03 6.87E−03 6.86E−03 6.67E−03 6.61E−03 6.59E−03 6.59E−03 6.58E−03 6.58E−03 6.58E−03
2 7.46E−03 7.43E−03 7.03E−03 6.87E−03 6.87E−03 6.86E−03 6.68E−03 6.62E−03 6.59E−03 6.59E−03 6.58E−03 6.58E−03 6.58E−03
3 7.79E−03 9.83E−03 7.03E−03 6.87E−03 6.87E−03 6.86E−03 6.68E−03 6.62E−03 6.59E−03 6.59E−03 6.58E−03 6.58E−03 6.58E−03
4 7.80E−03 1.06E−02 7.11E−03 8.84E−03 6.87E−03 6.87E−03 6.68E−03 6.63E−03 6.59E−03 6.59E−03 6.58E−03 6.58E−03 6.58E−03
5 9.04E−03 1.06E−02 7.15E−03 8.94E−03 6.96E−03 6.88E−03 6.69E−03 6.64E−03 6.59E−03 6.60E−03 6.58E−03 6.58E−03 6.58E−03
6 9.45E−03 1.06E−02 7.42E−03 9.68E−03 7.17E−03 7.22E−03 6.71E−03 6.65E−03 6.59E−03 6.60E−03 6.58E−03 6.58E−03 6.58E−03
7 1.00E−02 1.14E−02 7.49E−03 9.80E−03 7.37E−03 7.45E−03 6.72E−03 6.65E−03 6.59E−03 6.63E−03 6.59E−03 6.58E−03 6.58E−03
8 1.34E−02 1.32E−02 7.99E−03 1.11E−02 8.57E−03 8.26E−03 6.72E−03 6.67E−03 6.60E−03 6.63E−03 6.59E−03 6.58E−03 6.59E−03
9 1.52E−02 1.33E−02 7.99E−03 1.15E−02 1.05E−02 8.54E−03 6.72E−03 6.67E−03 6.61E−03 6.63E−03 6.60E−03 6.58E−03 6.59E−03

10 1.53E−02 1.39E−02 8.73E−03 1.17E−02 1.06E−02 8.89E−03 6.73E−03 6.67E−03 6.62E−03 6.64E−03 6.60E−03 6.58E−03 6.59E−03
11 1.59E−02 1.43E−02 9.06E−03 1.24E−02 1.13E−02 8.96E−03 6.76E−03 6.69E−03 6.62E−03 6.64E−03 6.60E−03 6.58E−03 6.59E−03
12 1.63E−02 1.54E−02 9.25E−03 1.28E−02 1.14E−02 8.96E−03 6.76E−03 6.69E−03 6.62E−03 6.64E−03 6.61E−03 6.58E−03 6.59E−03
13 2.14E−02 1.67E−02 9.67E−03 1.37E−02 1.20E−02 9.92E−03 6.76E−03 6.69E−03 6.62E−03 6.66E−03 6.62E−03 6.58E−03 6.59E−03
14 2.20E−02 1.68E−02 9.78E−03 1.42E−02 1.22E−02 1.00E−02 6.76E−03 6.69E−03 6.64E−03 6.66E−03 6.62E−03 6.58E−03 6.60E−03
15 2.25E−02 1.69E−02 9.82E−03 1.48E−02 1.31E−02 1.07E−02 6.77E−03 6.71E−03 6.65E−03 6.68E−03 6.63E−03 6.58E−03 6.60E−03
16 1.13E−02 1.06E−02 1.06E−02 1.01E−02 8.49E−03 7.92E−03 7.50E−03 7.45E−03 7.29E−03 7.21E−03 7.18E−03 6.92E−03 6.84E−03
17 1.13E−02 1.06E−02 1.06E−02 1.06E−02 8.49E−03 7.92E−03 7.50E−03 7.46E−03 7.29E−03 7.21E−03 7.19E−03 6.92E−03 6.84E−03
18 1.13E−02 1.60E−02 1.06E−02 1.06E−02 8.69E−03 7.92E−03 7.50E−03 7.46E−03 7.30E−03 7.25E−03 7.19E−03 6.92E−03 6.84E−03
19 1.13E−02 1.70E−02 3.45E−02 1.18E−02 9.15E−03 8.59E−03 7.54E−03 7.50E−03 7.34E−03 7.25E−03 7.19E−03 6.92E−03 6.84E−03
20 1.42E−02 2.42E−02 3.48E−02 1.29E−02 1.07E−02 1.19E−02 7.54E−03 7.50E−03 7.38E−03 7.26E−03 7.25E−03 6.92E−03 6.84E−03
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Table 3
Variation of the best parameter set with the lowest MSE, according to each generation.

0 1 2 3 4 5 10 20 30 40 50 60 80

ka(BHF-L) 1.25E+03 1.25E+03 1.76E+03 1.98E+03 1.98E+03 1.98E+03 1.98E+03 1.83E+03 1.83E+03 1.83E+03 2.07E+03 2.07E+03 3.41E+03
ka(BHF-M) 7.02E+02 7.02E+02 6.99E+02 1.07E+03 1.07E+03 1.07E+03 1.07E+03 6.99E+02 6.99E+02 6.99E+02 1.14E+03 1.14E+03 1.14E+03
ka(BHF-H) 9.50E+02 9.50E+02 9.32E+02 9.62E+02 9.62E+02 9.62E+02 9.34E+02 1.64E+03 1.64E+03 1.64E+03 1.64E+03 1.57E+03 1.38E+03
ka(BF) 5.44E+02 5.44E+02 1.10E+03 8.57E+02 8.57E+02 8.57E+02 8.03E+02 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03 1.10E+03
ka(BHF-GB) 1.17E+02 1.17E+02 8.07E+01 4.72E+01 4.72E+01 4.72E+01 1.68E+02 2.09E+02 7.10E+02 7.10E+02 7.10E+02 7.10E+02 7.10E+02
kd(BHF-L) 5.66E−04 5.66E−04 1.29E−03 6.58E−04 6.58E−04 6.58E−04 1.40E−03 1.21E−03 1.21E−03 1.21E−03 1.21E−03 1.21E−03 1.21E−03
kd(BHF-M) 7.10E−04 7.10E−04 1.10E−03 9.36E−04 9.36E−04 9.36E−04 9.97E−04 9.95E−04 9.95E−04 9.95E−04 1.02E−03 1.59E−03 1.59E−03
kd(BHF-H) 1.24E−03 1.24E−03 1.82E−03 1.03E−03 1.03E−03 1.03E−03 1.80E−03 1.63E−03 1.63E−03 2.89E−03 1.40E−03 1.65E−03 1.65E−03
kd(BF) 7.96E−04 7.96E−04 1.07E−03 8.08E−04 8.08E−04 8.08E−04 3.02E−03 3.37E−03 3.37E−03 4.44E−03 3.38E−03 3.38E−03 3.51E−03
kd(BHF-GB) 8.43E−04 8.43E−04 8.94E−04 6.89E−02 6.89E−02 6.89E−02 1.12E−03 3.89E−03 3.89E−03 4.03E−03 3.95E−03 3.57E−03 3.76E−03
kL 1.25E+03 1.25E+03 7.95E+06 3.87E+06 3.87E+06 3.87E+06 5.79E+06 5.29E+06 5.29E+06 5.11E+06 5.47E+06 5.47E+06 5.38E+06
V′ 1.11E+03 1.11E+03 1.26E+03 1.12E+03 1.12E+03 1.12E+03 1.21E+03 1.21E+03 1.21E+03 1.21E+03 1.21E+03 1.21E+03 1.21E+03
L0 1.41E−06 1.41E−06 1.39E−06 1.00E−06 1.00E−06 1.00E−06 1.11E−06 9.64E−07 9.70E−07 9.98E−07 7.36E−07 7.40E−07 7.19E−07
MSE 4.25E−02 4.25E−02 3.36E−02 2.59E−02 2.59E−02 2.59E−02 1.59E−02 1.38E−02 1.18E−02 1.11E−02 1.02E−02 9.38E−03 7.76E−03

100 120 140 160 180 200 240 280 320 360 400 440 500

ka(BHF-L) 3.41E+03 3.41E+03 3.41E+03 3.41E+03 3.41E+03 3.41E+03 3.52E+03 4.57E+03 4.70E+03 4.70E+03 4.65E+03 4.65E+03 4.73E+03
ka(BHF-M) 1.14E+03 1.14E+03 1.14E+03 1.14E+03 1.14E+03 1.14E+03 1.16E+03 1.16E+03 1.16E+03 1.16E+03 1.16E+03 1.16E+03 1.14E+03
ka(BHF-H) 1.38E+03 1.38E+03 1.38E+03 1.38E+03 1.38E+03 1.38E+03 1.28E+03 1.25E+03 1.25E+03 1.25E+03 1.23E+03 1.24E+03 1.23E+03
ka(BF) 1.10E+03 1.60E+03 1.53E+03 1.51E+03 1.51E+03 1.55E+03 1.78E+03 1.87E+03 1.95E+03 1.94E+03 1.92E+03 1.96E+03 2.03E+03
ka(BHF-GB) 7.10E+02 6.22E+02 6.22E+02 5.87E+02 5.87E+02 5.87E+02 5.48E+02 5.15E+02 5.15E+02 5.15E+02 5.16E+02 5.11E+02 5.09E+02
kd(BHF-L) 1.21E−03 1.21E−03 1.21E−03 1.25E−03 1.25E−03 1.25E−03 1.47E−03 1.91E−03 1.83E−03 1.82E−03 1.81E−03 1.83E−03 1.83E−03
kd(BHF-M) 2.33E−03 2.22E−03 2.22E−03 2.41E−03 2.41E−03 2.41E−03 2.70E−03 2.59E−03 2.59E−03 2.59E−03 2.65E−03 2.66E−03 2.63E−03
kd(BHF-H) 1.65E−03 1.71E−03 1.71E−03 1.80E−03 1.80E−03 1.80E−03 1.48E−03 1.19E−03 1.21E−03 1.22E−03 1.15E−03 1.15E−03 1.15E−03
kd(BF) 3.51E−03 4.33E−03 4.40E−03 4.46E−03 4.46E−03 4.46E−03 4.74E−03 4.74E−03 4.77E−03 4.77E−03 4.80E−03 4.79E−03 4.85E−03
kd(BHF-GB) 3.76E−03 3.90E−03 3.61E−03 3.87E−03 3.87E−03 3.87E−03 3.62E−03 3.38E−03 3.30E−03 3.31E−03 3.46E−03 3.27E−03 3.27E−03
kL 5.38E+06 5.30E+06 4.66E+06 4.66E+06 4.66E+06 4.66E+06 4.48E+06 4.53E+06 4.54E+06 4.54E+06 4.54E+06 4.53E+06 4.52E+06
V′ 1.21E+03 1.19E+03 1.19E+03 1.19E+03 1.19E+03 1.19E+03 1.19E+03 1.18E+03 1.19E+03 1.19E+03 1.19E+03 1.19E+03 1.19E+03
L0 7.19E−07 8.76E−07 3.84E−07 3.98E−07 3.98E−07 3.98E−07 3.30E−07 3.51E−07 3.10E−07 3.07E−07 3.06E−07 3.07E−07 3.01E−07
MSE 7.46E−03 7.41E−03 6.98E−03 6.87E−03 6.87E−03 6.86E−03 6.67E−03 6.61E−03 6.59E−03 6.59E−03 6.58E−03 6.58E−03 6.58E−03
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Fig. 5. Simulated (sim) and measured (exp) ethylene removal for BTF-L (a), BTF-M
(b), BTF-H (c), BF (d), and BTF-GB (e) treatment sets.
eering Journal 158 (2010) 89–99

from their corresponding measured data ranged from 4.0 × 10−3

to 1.6 × 10−2. The small range of error implied that the numerical
model generally provided a good fit of the experimental data. The
simulated ethylene removal efficiencies during the initial period
were lower than their corresponding experimental data. This is
because the ethylene removal efficiencies were assumed to be zero
on day 92, for the convenience in modeling.

The standard deviation for BTF-L was much larger than the oth-
ers, because of a high difference of C2H4 removal between the two
BTF-L reactors. The model seems to poorly simulate the ethylene
removal of BF reactors, compared with other reactors. Unlike the
perlite biotrickling filters, the ethylene removal efficiencies of the
BF reactors were highly increased after day 110. It seems that BF
reactors required longer adaptation periods than perlite BTF reac-
tors.

The optimized estimation of each parameter was conducted
together with the 95% of confidential intervals under the assump-
tion that the error distribution around the estimated value of the
parameter should follow the normal distribution with the mean as
the estimated value.

This estimated parameter ka (95% C.I.) was
6.22 × 103 ± 4.91 × 103, 1.51 × 103 ± 3.33 × 102, 1.62 × 103 ± 5.27 ×
102, 2.67 × 103 ± 1.63 × 103, and 6.70 × 102 ± 2.03 × 102 m2 m−3

for BTF-L, BTF-M, BTF-H, BF, and BTF-GB, respectively. The rela-
tively high ranges of ka for BTF-L reflect the large difference of
C2H4 removal between BTF-L1 and BTF-L2. The physico-chemical
meaning of the parameter ka is specific media surface area that
contains active biofilm exposed to ethylene gas. It is consequential
that C2H4 removal can be expected to increase, as ka increases. A
high (or low) ka can be obtained by a high (low) specific surface
area of media, a high (low) biofilm-covered portion of the media
surface area, and a low (or high) mass transfer limitation.

The major mass transfer limitation of ethylene in this study
results from trickle liquid flow. However, the limitation effect is
apparently not linearly correlated to the trickle liquid flow rates.
For example, BTF-M and BTF-H have comparable ka even though
BTF-H reactors have much higher liquid recirculation rates. This is
possibly related to liquid film thickness and wetted surface areas
where liquid covered the surrounding biofilm. That is, although
BTF-H had greater trickling liquid in the reactor, the BTF-M and BTF-
H reactors may have had the similar limitation affect each other.
The optimized values of the parameter kd representing biofilm
detachment and deactivation [9] were 1.83 × 10−3, 1.26 × 10−3,
1.15 × 10−3, 4.85 × 10−3 and 3.47 × 10−3 h−1 for BTF-L, BTF-M, BTF-
H, BF, and BTF-GB, respectively. The standard deviation for the kd
parameter could not be obtained for most of the reactor treat-
ment sets, because the parameter sensitivity is relatively low (this
will be discussed in the next section). As for other estimated
parameters according to treatments, the lumped microbial degra-
dation parameter V′ was estimated as 1.19 × 103 ± 1.20 × 102 h−1,
kL, which is the parameter denoting cell conversion and density, as
4.52 × 106 ± 5.41 × 105 m3 mg−1, and initial biofilm thickness (L0)
as 3.01 × 10−4 ± 1.02 × 10−4 mm.

Figs. 6a–e exhibit the results of the sensitivity study for parame-
ters ka, kd, kL, V′, and L0, as a result of estimations with five treatment
sets. As shown in Fig. 6a, the BTF-L2 and BF reactors with low liquid
recirculation rates had high ka values. This implies that low liquid
recirculation may provide a large biofilm surface exposed to the gas
phase, which leads to high ka. On the other hand, BTF-GB with the
low biofilm exposed surface area had a low ka. In this study, perlite
is assumed to be 100 times higher in specific surface area active
for biofilm attachment than glass beads, but ka of BTF-L was just

10 times higher than that of BTF-GB. It probably because only large
pores in perlite were available for the microbial habitat, even if
small pores contribute to enlarging the media surface area [28,29].
The sensitivity for kd shown in Fig. 6b was mostly low around the
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Fig. 6. The mean sum of errors between measured and simulated ethylene removal
efficiencies as influenced by ka (a), kd (b), kL (c), V′ (d), and L0 (e).
Fig. 7. Estimated parameters kL and V′ , and the variables L0 for each reactor (BTF-L
to BTF-GB) and those for five treatment sets (w/5).

optimal values, although the sensitivity suddenly increased as kd
increased, which means biofilm detachment or deactivation [9] was
severely affected by kd only when its value is high. BF had a unique
pattern in the sensitivity curve, with kd because biofilm detachment
significantly affecting the simulation prediction of C2H4 removal by
BF. Actually, this parameter is a kind of nuisance parameter because
the first term of the right-hand side of Eq. (4) is more decisive in
biofilm thickness calculation on the left hand side of Eq. (4).

Fig. 6c–e presents the results of the parameter sensitivity for
kL, V′, and L0. The lumped microbial parameter V′ was a highly
sensitive parameter, which means the microbial degradation abil-
ity is one of the most influential factors in ethylene removal. The
model by Deshusses et al. [6] also reported that when the effective
coefficient is greater than 1.0 m2 s−1, the elimination capacities (or
removal efficiencies) of methyl ethyl ketone are highly affected by
the increase of maximum degradation rates. The 10 times increase
of maximum degradation rates leads to great increase of removal
efficiencies from 10–15% to approximately 45%.

As stated earlier, the parameter estimations described above,
was implemeted based on the assumption that the lumped micro-
bial degradations and the microbial growth parameters were
identical for all reactors, and checked by calculating all parameters
based on entire five treatment sets. To check the reasonableness of
the assumption, as presented in Fig. 7, this study newly estimated
kL, V′, and initial biofilm thickness L0 with each individual reactor
treatment set. The vertical axis of the bar graph in Fig. 7 represents
the values of log10(kL) for gray bars, −log10(V′) for black bars, and
−log10(L0) for white bars.

Fig. 7 shows that kL (4.14 × 106 to 5.60 × 106 mg m−1) and V′

(1.15 × 103 to 1.39 × 103 h−1) exhibited little variation, but L0 rang-
ing from 7.78 × 10−5 to 1.27 × 10−4 mm showed a relatively large
variation. In particular, as a result of the estimation with a sin-
gle reactor set, BF reactors produced relatively different estimation
results of kL and L0 (Figs. 5d and 6d versus Fig. 7). However, as for
other the other sets, there was little difference between the five
individual treatment sets.

This study provided information on the microbial degradabil-
ity of C2H4. The parameter kL means cell density divided by yield
coefficient (X·Y−1), which is calculated as 4.4 g L−1 in this study. The
lumped microbial degradation parameter divided by the parame-
ter V′/kL indicates the maximal specific microbial growth coefficient
divided by the half saturation coefficient (�max Kh

−1), correspond-
ing to 6.2 m3 d−1 g−1 and 5.65–7.26 m3 d−1 g−1, based on estimation

with five treatment sets and an individual treatment set, respec-
tively.

Using toluene degradation in a biotrickling filter, Alonso
et al. estimated 20 m3 d−1 g−1 and 20 L g−1 for V′·kL

−1
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ig. 8. Predictive ethylene removal efficiencies according to variation of media dep
icrobial degradation parameter (d).

=�max/Kh
−1) and kL (=X·Y−1), respectively [8,9]. In Tabak et

l.’s study on liquid phase bioremediation [30], M-xylene
nd benzene were estimated as 3.94 and 0.2 for V′ kL

−1

=�max·Kh
−1). This shows that the microbial degradability

�max·Kh
−1) of C2H4 is higher than M-xylene or benzene but

ower than toluene. The parameter kL (X·Y−1) of C2H4 is smaller
han that of toluene, probably because of the low density of C2H4
egraders due to the co-existence of nitrifiers [31,32].

The carbon mass balance was simply established with outlet
O2 concentrations and inlet C2H4 concentrations shown in the
ee’s study [22], together with C2H4 removal efficiencies character-
zed in the present study. As a result, approximately 75% of carbon

olecules in degraded C2H4 were converted to CO2. Compared with
ther previous studies, almost complete conversion from C2H4 to
O2 is usually expected, as in the studies of Elsgaard [33] and Kim
34], but the dynamic phase of C2H4 removal in this study may
tilize a significant amount of C2H4 carbons for microbial cell con-
truction. Also, it is possible that some of the 25% of C2H4 could
e converted into incomplete oxidized compounds as ethanol or
ethyl-ketones other than CO2 [35], or utilized for inactive micro-

ial cell formation. The biofilm growth resulting from ammonia
emoval was not included in the simulation, because only little
mounts of ammonia can be utilized for biofilm formation [22].

The predictive C2H4 removal efficiencies were influenced by
ariation of the media bed depth (Fig. 8a), inlet C2H4 concentrations
Fig. 8b), the lumped mass transfer parameter (ka) (Fig. 8c), and the
umped microbial degradation parameter (V′) (Fig. 8d). The predic-
ive C2H4 removal and the parameter sets were obtained from the
imulated data of BTF-L during days 152–176.

Fig. 8a shows that C2H4 removal increases as media bed depth
ncreases (or EBRT increases). However, the improvement is small

t a media depths greater than 1.5 m (or a gas flow rate less than
.5 L min−1), the improvement decreases. The C2H4 removal effi-
iencies measured at 0.25 m depth in the profile study were less
han the corresponding predicted values shown in Fig. 8a [22]. The
verestimation of the removal efficiencies in the simulation over
, inlet concentrations (b), the lumped mass transfer parameter (c), and the lumped

the corresponding experimental data is probably due to the pres-
ence of activated nitrifiers at the upper part of the reactor, which
led to possible inactivation of C2H4 degradation.

Fig. 8b exhibits the simulated C2H4 removal efficiencies accord-
ing to C2H4 inlet concentrations. Such low inlet concentrations of
8 or 16 mg m−3 resulted in very low C2H4 removal efficiencies, due
to low biofilm growth rates. The proposed simulation utilized first
order kinetics to model C2H4 degradation and therefore could not
be used with high inlet concentration ranges. Fig. 8c and d shows
C2H4 removal efficiencies as influenced by ka and V′. These graphs
show that high ka or V′ is needed to increase C2H4 removal. Also,
the effect of microbial degradation V′ on C2H4 removal was greater
than that of ka. The parameter ka can increase by using media with a
highly specific surface area or optimized trickle liquid recirculation
rates. The increase of the microbial parameter V′ can be achieved
by optimizing nutrients supply or applying microorganisms with a
high C2H4 degradability [32,33].

As for the applicability of the genetic algorithm to biofiltration
design and operation, it is useful for predicting reliable estimation
values of the parameters in complicated theoretical equations. The
accuracy of the prediction of biofiltration performance using the
genetic algorithm is as high as that of the ANN model [20] by Rene et
al. which utilized the artificial neural network algorithm. The ANN
model, which enables a computer to recognize the input-output
data pattern, can provide good prediction results within a short
computation time but may give unrealistic solutions when the true
output is not recognized on the basis of past input–output data
pattern. The advantage of the modeling approach in this study over
the ANN model is that inclusion of the theoretical equations for
mass transfer and biodegradation enables wide ranges of scientific
prediction. For example, an extrapolation to predict biofiltration is

possible with only a small number of parameters. The disadvan-
tage of the model in the proposed study is the high complexity in
model construction and time-consuming in computation, because
the genetic algorithm should deal with much more solution candi-
date than the ANN model.
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. Conclusions

A numerical model using a genetic algorithm was developed to
stimate unknown parameters in C2H4 removal in biofiltration and
elated biofilm thickness changes. The model accounted for first
rder microbial degradation of C2H4 and an active media surface
rea resulting from the mass transfer limitation of gaseous C2H4
ransfer. The experimental data predicted by the model consisted
f C2H4 removal efficiencies with time of operation.

The parameters to be estimated were classified into two groups.
he first is the group of parameters that have identical values over
ll reactors, including lumped parameters for microbial growth,
2H4 degradation, and initial biofilm thickness. The second group
onsisted of active specific surface area and a parameter for biofilm
etachment, both of which were estimated differently according to
ve individual treatment sets.

The genetic algorithm was applied to find a global solution
or optimal parameter estimation. The difference in C2H4 removal
etween reactors or modes was mostly explained by different val-
es of ka parameters. The high removal of C2H4 in the perlite
iotrickling filters with a low liquid recirculation rate was caused
y a large active surface area that facilitated C2H4 transfer from the
as to the biofilm phase. By contrast, other reactors suffered from
ow microbial activity or high mass transfer limitations.
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